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ABSTRACT

In this paper we describe high resolution discretisations for the 2-dimensional
steady Euler equations. Two new schemes (superbox and starbox) are
presented. The second order discrete equations are solved with the help of a
specially efficient first order multigrid solver. Moreover, a tau-extrapolation
technique is applied to further improve the accuracy. In this way an iterative
procedure is developed to find, during the solution process, an increasingly
more accurate approximation to the solution (higher than 2nd order if an
asymptotic expansion exists). A few basic multigrid cycles are usually
sufficient to obtain the final approximation up to truncation error accuracy.

1. DISCRETISATION PROCEDURES

Neglecting heat conduction, the flow of an inviscid gas is described by the
Euler equations. In two dimensions these equations are

3q + 9 + 9 = 1.1
YRR AC) = glg) =0, (1.1)
with
p pu pv
_ |pu f= pu’+p — | e |, 12
9 pv|’ puy 1 pv? +p ’
pe pue +up pve +vp

where p , u , v, e and p represent density, velocity in x- and y- direction,
specific energy and pressure respectively. The pressure is obtained from the
equation of state, which - for a perfect gas - is given by
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p=(r—1)ple—3(u?+v2)),

v is the ratio of specific heats. g(z,x,y) describes the state of the gas as a func-
tion of time and space and f and g are the fluxes in the x- and y- direction.
We denote the open domain of definition of (1.1) by Q" .

To allow discontinuous solutions, (1.1) can be rewritten in its integral form

%ffqudy + [(fone +gn)ds = 0, (1.3)
Q 30

for all QCQ" ;
9Q is the boundary of @ and (n,,n,) is the unit outward normal vector at the
boundary 9.

The form (1.3) of equation (1.1) shows the character of the system of conser-
vation laws: the increase of ¢ in Q is caused only by the inflow of g over 3%.
In symbolic form we write (1.3) as

g + N(g) = 0. (1.4)
In this paper we are only interested in the solution of the steady state equation
N(g) =0 (1.5)

The solution of the weak form (1.3) of (1.1) is known to be non-unique and
a physically realistic solution (which is the limit of a flow with vanishing
viscosity) is known to satisfy the additional entropy condition (cf. [1,2] ).
Further, the equation (1.1) is hyperbolic, i.e. written in the form

iq_+_a.£._a_q_+.§g..i‘].=0
at dg 0x dqg dy

the matrix

0L g,
9 dq

has real eigenvalues for all (k,,k,) and the 4 eigenvectors span the 4-D state

space. .

These eigenvalues are (k u+k,v)*c and (k,u+k,v) (a double eigenvalue),
where ¢ = Vyp /p is the local speed of sound. The sign of these eigenvalues
determines the direction in which the information about the solution is carried
along the line (k|,k;) as time develops. It locates the domain of dependence.
The entropy condition implies that characteristics do not emerge at a discon-
tinuity in the flow.

In order to discretise (1.1) or (1.3) on a domain with an irregular grid, we
use a finite volume technique. The domain of definition, Q°, is divided into a
number of disjunct cells {Q,} and equation (1.3) is required to hold on each
U, . In this way the conservation character is preserved, provided that we
take the same approximation for the flow quantities f f-ne + gny, ds, both for
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the computation of the outflow of &, and for the inflow of Qg for any two



neighbouring cells @, and Q4 with T, = 92,M9Qs . In that case (1.3) holds
for any @ which is the union of an arbitrary subset of {€,}. In this method
there is no need to transform the equations (1.1) or the boundary conditions
with respect to the independent variables (x,y).

In order to generate a nested sequence of discretisations with decreasing
meshwidth for our multigrid solution procedure, and to minimise the adminis-
trative overhead of the computer code, we found it most convenient to to
divide the domain €' in quadrilateral cells ©;, in a way topologically
equivalent with a regular division in squares. Then ;. j=1 are the only pos-
sible neighbours of £;; . In this way a mapping is conceived from a rectangu-
lar and regular “computational domain” to the irregular physical domain.
This mapping plays a role only for the generation of the sequence of refining
irregular grids, and in the proofs of the accuracy of the resulting schemes. We
take this mapping non-singular (i.e. with non-vanishing Jacobian J on £ ) and
sufficiently smooth (with bounded partial derivatives of J). The mapping
determines the vertices of the quadrilateral cells in the physical space, where
all cell-edges are straight line segments. As a consequence any domain £ with
a curved boundary is approximated by a polygonal domain, but in subsequent
refinements the curved lines are better approximated.

The discrete approximation g, of g(x,y) is represented by a (vector-) value
g for each @;. This g; is associated with the mean value of g over ;. Using
(1.3), the space discretisation method is now completely determined by the
method of approximation of

[(fine + gny)ds, k = N,E,S,W, (1.6)
Tk

at the four walls T';; of the cell €;. The wall I';x may be either a common
boundary with another cell 2;; or a part of the boundary 9Q". In both cases
the approximation of (1.6) is computed as

Ak, qfx) - meas(Tij), (1.7)

ie. at each I, we approximate fn, + gn, by a constant value , which
depends only on qu an approximation to g(x,y) in &;; at the edge I'%, and
also on g¢fy, an approximation to g(x,y) in the neighbouring cell £;; at .
(Notice that we allow the approximation of g to be discontinuous over I';;.)

The semi-discretisation of the equation (1.5) is now the set of non-linear
equations

Nu(gn) lij = 3 f*(qqix) meas(Ty) = 0 (1.8)
k=N.ESW
for all (i,j) with Q,-j cQ.

The approximate flux f*(¢¥,qf) depends on g, the approximation of g,
near [';; and also on the direction (n';,n)’f) of the edge I';;. However, by the
rotation invariance of the Euler equations, we may relate f4(.,.) to a local
coordinate system, rotated such that it is aligned with I';z. Then this compu-
tation comes down to
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FAq gk = T ATl Teghu)
Here f(...) is a numerical flux function, independent of the orientation of I';x.
The operator T, takes care of the local rotation of the coordinate system at
i If (n,,n ) = (1,0), then T} is the identity operator. In this way only a
single function f(.,.) is needed to apprommate the flux between two cells.

The description of the discretisation is completed by the choxce of the
numerical flux function and by the determination of q,j and q,jk from
{‘/U | SZ,/ ca). . .

For consistency of the resulting scheme, f{(.,.) should satisfy

f(q.q9) = f(g), cf. [3]. A usual representation of f(.,.) is given by
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F@ogn) = 2/@0) + TF@) = T d(go.q1)- (1.9)

A central difference flux is defined by d(g9,4:) = 0 . For reasons explained
in [4], in our multigrid procedure we use a slight modification of an upwind
numerical flux function that was proposed by Osher [5,6] ; viz. (1.9) with
d(.,.) defined by

d(go,q1) = f l—f-l(w) dw (1.10)
qo

where the integration path in the state space follows three sub-paths along the
eigenspaces of 3f/9dg. These sub-paths correspond to the eigenvalues
M=u—c, A\=A;= u, and \y= u +c respectively. This implies that, except
at a location of a shock, we can write f(q9,41) = f(¢"), where ¢ is connected
with ¢o by the Riemann invariants corresponding to A=0, and ¢" is con-
nected with ¢, by the Riemann invariants for A<<0. In the case of a shock we
find a numerical flux of the form f(qq.91) = f(g1) — flg2) + f(g3), for some
proper g, k=1.2,3.

At the boundary of the domain Q" , interpolation of g, from the interior of
Q ylelds a value quk at that boundary, which corresponds to a mean value of
g at T';; in ;. For well posed boundary conditions B(g) = 0 at I'; , a value
¢9¢T can be ‘determined such that it satisfies the boundary conditions and is
connected to g{x by the Riemann invariants for A <0 at the left ( or A <0 at
the right ) boundary. This implies that

f*(quk ’qx_/k) = Tk lf( Tk qglyr), (ll]a)
and
B(¢¥T)=0, (1.11b)

is satisfied at a point on I'; . For details see [4] .

The basic first order scheme.

For our first order scheme we use a piecewise constant numerical approxi-
mation for ¢ for each quadrilateral cell:

gr(x.y) = gy for (x,y)eQ (1.12a)



This uniform state in Qij is assumed for all (i,j), and hence

The flux at 'y now corresponds with the flux at a discontinuity between two
uniform states. Such a flux can be computed by solving the Riemann problem
of gasdynamics (i.e. Godunov’s method). However, this is a nontrivial non-
linear computation, and we approximate it by (1.9) - (1.10), which is essen-
tially Osher’s “approximate Riemann solver”.

The order of accuracy of the resulting schemes on the nonuniform mesh is
not immediate. It can be proved that, in this waz, at most second order accu-
racy can be obtained for irregular grids, when q,-j-,qu-k are computed properly.
With the approximation (1.12.b) the scheme is first order accurate.

For a function ¢, the truncation error is defined as

() = Ny(Ryq) — Ry N(g) (1.13)

where the restriction operators R, and 1—(,, take mean values over cells. For
(1.12.b) and a smooth g it can be shown that 7,(g) = &h) for h—0. We
denote the first order discrete equations (1.8) - (1.12) in symbolic form by

Nign) = 0. (1.14)

This first order discretisation is conservative, satisfies an entropy condition,
is monotonous and gives a sharp representation of discontinuities (shocks and
contact discontinuities), as long as these are aligned with the mesh. Further it
allows an efficient solution of the discrete equations by a multigrid method [7]

Disadvantages are the low order of accuracy and the fact that it is highly
diffusive for oblique discontinuities. For a first order (upwind) scheme these
are well known facts and it leads to the search for other grids and higher order
methods.

The superbox scheme.

A property that we want to maintain in a second order scheme, is the con-
servation of g, because it allows discontinuities to be captured as weak solu-
tions of (1.1). Therefore, we consider only schemes that are still based on
(1.8), and we select f*(g¥,gfx) to yield a better approximation to (1.6) than
(1.12b).

A straightforward way to form a more accurate approximation is to replace
the 1st order approximation (1.12) by a 2nd order one. Instead of the piece-
wise constant approximation for g(x,y), we now use a piecewise bilinear func-
tion gu(x,y) on a set of 2X2 cells (a “superbox”). Such a superbox on the h-
level corresponds with a single cell at the 2h-level. Over the boundaries of the
superbox, the trial function g(x,y) can be discontinuous again. Inside the
superbox it is determined by gij, §i+1,j, ¢ij+1 and g;+1;+1, the mean values
over the sub-cells of the superbox (see figure 1). Using the bilinear function,
we see that a central difference approximation is used for the four flux compu-
tations inside the superboxes; at superbox boundaries interpolation is made
from the inside of the superbox by the bilinear interpolation. In this way the
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values {q,)} are computed and the approximate Riemann solver is used to
compute the numericzl flux. We denote the correspondmg discrete operator
by N7°. It is easily shown that this superbox scheme is 2nd order accurate in
the sense that

Run (NI (Ruq) — RyN(q) = O(h?) .

We elucidate this superbox discretisation by its 1-dimensional analogue. Let

,v denote states in the cells {®;} with barycentres at x; and walls

between cells at x;.;,;. Superboxes are Q2 =9, _, U, i = 1,2,....N.
For the computed fluxes at x;,,,, we have to distinguish between odd and
even j. At an internal wall Xy -1,2 we find the interpolated value
Gai-1,2 = (Gq2i-1Ftgn) /2 and at a superbox wall x2,+|/2 we have interpo-
lated values from the left, qz, +1,2, and from the right, qz, +1,2- We define
Agjv1/2 = g+ q, and find the 2nd order one-sided interpolated values

gEi+1,2 = qu + 7A42i~1/2 , (1.15)
1
q§i+l/2 = G2+ — 7M21+3/2 )

The computed fluxes at { x;+, /3 } now a.refz,_l/z = flqai-1,2 + qu, 1,2)
and fy;+,,2 = f(qz, +1/2 » G2i+1,2)- We notice that the states q2,+1/2 and
, g% +1 2 are well determined, even near the boundary dQx, so that the pro-
E cedure to compute the boundary fluxes is also competely described by (1.11).

Star schemes

A disadvantage of the quadrilateral cells in a more complex flow
configuration can be the existence of (only) two special directions in which
possible discontinuities are allowed. Discontinuities aligned with the gridlines
are easil; represented by g, whereas discontinuities skew to the meshlines are
hard to resolve. Although higher order approximations may relieve this situa-
tion [8] , they can lead to too large spurious extrema (a Gibbs-like effect).
Some improvement of this situation may be expected if more mesh-line direc-
tions are introduced. For this purpose we constructed a mesh with triangular
cells. In the “computational domain” these tnangles are formed by refinement
of the quadrilaterals as previously described, in such a way that each quadran-
gle is divided into 4 triangles by connecting its barycentre with the vertices
(see figure 1). For the new first order scheme based on these triangles (the
Ist-order star scheme ), uniform states are assumed in all triangular cells (i.e.
gn(x,y) is a piecewise constant function over the triangles), and the discrete
operator is defined by

Ny (@n) |a = k_§l:l3f*(qa,qa,k) meas(l'yx) = 0 » (1.16)

where the summation is over the 3 sides of the triangular cell Q,; g, is the
state in cell £, 4, the k-th neighbour triangle of &2,.

For the second order scheme based on these triangles (the 2nd order star-
scheme ), we introduce a linear representation of g,(x,y) in each set of 4
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triangles that were all formed in the same quadrangle. This interpolation is
made such that

In(x2:y2) = (Qai+2739 + Gui-2/325 + quiz+2,3 + quzj-2,3) /4,
O _ 92+2/3y T 92i-2/3% 0Gh _ G2i2+2/3 T 42.2/-2/3

dx X2i+42/32) T X2i-2/32f dy X2i2j+2/3 T X2i,2j~2/3

The indices correspond with the barycentres of the triangles in the computa-
tional domain. By this interpolation all the values at the cell walls,
{ qf, |2, CQ sk =1,2,3), are determined, and the discrete scheme reads

NG e = 3 3 f¥(gk.q% 1) meas(Toz) (1.17)
k=12,

= 3 Tif(Tegk Tigk i) meas(T,,) = 0.
k=123

2. MULTIGRID ALGORITHMS AND TAU-EXTRAPOLATION

The usual way to find the solution of the steady state equations

Nu(gr) = 0, .1
is to integrate for r—co, the semi-discrete system of equations
(qrn). + Nu(gn) = 0, (2.2)

i.e. to take an initial guess and to compute g,(z) until initial disturbances have
sufficiently died out. The advantage is that, starting with a physically mean-
ingful situation, we expect that a meaningful steady state will be reached, even
when unicity of the steady equations is not guaranteed. The drawback is that
many timesteps may be necessary before the solution has sufficiently con-
verged. For the acceleration of the convergence, many devices have been
developed such as local time stepping, residual smoothing, implicit residual
averaging or enthalpy damping [9] .

Multigrid is also used as an acceleration device for (2.2) [10,11,9] . In that
approach space-discretisations (2.1) are given on a sequence of grids. The
coarse grids are used to move low frequency disturbances rapidly out of the
domain Q' by large timesteps, whereas high frequency disturbances are locally
damped on the fine grids by sufficiently dissipative timestepping. This
accelerated procedure still may require a reasonably large number of steps
(>100).

For the multigrid solution of (2.1), we take another approach [12,13,4] .
We consider directly the steady state equations and we first construct a
sequence of nested 1st order discretisations as described in the previous sec-
tion. By the stability of the first order discretisation, a relatively simple relaxa-
tion method (Collective Symmetric Gauss Seidel (CSGS) iteration, i.e. a SGS
relaxation where the 4 variables corresponding to a single cell &;; are relaxed
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collectively) is able to reduce the high frequency error components efficiently,
and -therefore- a FAS multigrid algorithm with this relaxation is well suited to
solve the discrete first order equations [7] .

Although no explicit artificial viscosity is added to the scheme, a suitable
amount of “numerical diffusivity” is automatically introduced by the upwind
discretisation. As h—0, this "artificial diffusion” vanishes and the sequence of
discretisations converges to the Euler equations as the limit of an equation
with vanishing viscosity. This also motivates us to apply a simple mesh-
continuation procedure (FMG) for h—0, to find the initial estimates for the
FAS multigrid iteration. It appears that, under quite general circumstances,
the convergence factor of a FAS iteration cycle (with CSGS-relaxation and
p =g =s=1 as described in [7] ) ranges between 0.4 and 0.85, so that from
n=1 to n=8 of these FAS cycles suffice to compute the Ist order accurate
solution up to truncation error accuracy (see e.g. Chapter 5 in [14] ). The
complete Full Multigrid (FMG) method to compute the Ist order approxima-
tion is given in the following ALGOL68 procedures, cf. [15] .

proc FMG = (int n,L, ref [] field q, r) void:
begin
formto L
do
to n do FAS ( m,q,r) od;
if m<L
then q[m+ 1]:= interpolation q[m]
fi

od
end;

proc FAS = (int m, ref |] field q,r) void:
begin
to p do relax (q{m],r{m]) od;
if m>1
then
field qcoarse = restriction q[m];
gim-1]: = qcoarse;
rim-1]:= euler q{m-1]+ restrict (f{m] - euler q[m]);
to s do FAS ( m-1, g, 1) od;
g[m]:= q[m] + prolongation (q[m-1] - qcoarse)
fi;
to q do relax (q[m], 1fm] ) od
end;

In these programs q[1},...,q[L], and r{1],...,f{L] are sequences of grid functions
with increasingly finer meshes; q for the solution and r for the right-hand-side.
A call to the procedure relax(gy, r;) has the effect of a relaxation sweep for the
improvement of the approximate solution g, of Nj(q,) = r,. The operators



euler , restrict , restriction and prolongation correspond with the operators N,.
Ronn Or Ry, and Py o in the mathematical notation.

The procedure FMG assumes an initial estimate q[1] of the solution on the
coarsest grid. In r[1], ..., r[L] it takes as input the right-hand side of (2.1), i.c.
it should be initialized at zero. After a call it delivers in g[L] an approximate
solution on the finest grid. The procedure FAS updates the approximation at
the level m in q[m] by a FAS-cycle. By a single call of FMG and -depending
on the problem- a few subsequent calls of FAS at the level 1. we obtain the 1st
order discrete solution up to truncation error accuracy.

If we try to solve the 2nd order discretisation (2.1) in the same manner as
we do the first order equations, we may expect difficulties for two reasons.
First, the construction of the set of 4 equations to be solved at each cell £; in
the CSGS relaxation is much more complex . Secondly, the nonlinear equa-
tions (2.1) are less stable. The 2nd order discretisations are less diffusive, (in
the case of central differences clearly ”“anti-diffusive” [16] ). This may lead not
only to non-monotonous solutions, but it can also cause a Gauss Seidel relax-
ation not to reduce sufficiently the rapidly varying error components.

To obtain 2nd order accurate solutions, we do not try to solve the system

Ni(gn) =0 (23)

as such. We use the first order operator N} to find the higher order accurate
approximation in a defect correction iteration:

Nigh) =0, (2.4.2)
NG ™Dy = Ni(gh) — Nigs). (2.4.b)

For an introduction to the defect correction principle see [17] . By a well-
known technique [18] , it can be proved that -if the problem is smooth
enough- the accuracy of g is of order 2 for i =2.

In fact we may use g ¥ — g§/) as an error indicator. In the smooth parts
of the solution gf’ — gf!*? = O(h), ¢ — g™ = O(h?); where these
differences are larger, e.g. ©(1), the solution is not smooth (relative to the the
grid used). Then grid adaptation is to be considered rather than the choice of
a higher order method, if a more accurate solution is wanted.

In a multigrid environment, where solutions on more grids are available, we
can consider other approaches to compute more accurate solutions, such as (1)
Richardson extrapolation or (2) r-extrapolation. Both extrapolation methods
can be well used to find a more accurate solution if the solution is smooth
indeed. A drawback is that these methods rely on the existence of an asymp-
totic expansion of the (truncation) error for h—0, and -globally- no a-priori
information about the validity of this assumption is available.

Since the evaluation of Nﬁ(q,,) is hardly more expensive than the evaluation
of N}(gx), the costs to compute the defect in (2.4.b) is of the same order as the
evaluation of _ the relative truncation error Tonn(gh)
= NL(Rangn) — RuaN },(q;,). This makes us to prefer (24b) to
extrapolation for the computation of a 2nd order discrete system.
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Another disadvantage of extrapolation is that the accurate solution (for
Richardson) or the estimate for the truncation error (r-extrapolation) is
obtained at the one-but-finest level and no high resolution of local phenomena
is obtained. Whereas we want not only a high order of accuracy, but also an
accurate representation of possible discontinuities, in [8] we used Richardson
extrapolation (only) as a possibility to find a higher order initial estimate for
the iteration process (2.4.b). In the present paper we concentrate for a while
on t-extrapolation to improve the accuracy of the smooth components in the
solution as they are obtained from the 2nd order scheme.

Tau extrapolation
Let the nonlinear equation

Na(@) = ra @.5)
with g, €X,, r, €Y}, be a discretisation of
N@g =r, (2.6)

where ge X, re?, and let the discretisation be such that r, = I.{,,r and let the
operator N,:X,— Y} satisfy

Ny(Ruq) = ry + m(q), .7
(q) = W’ R,7(q) + O(W), forh—0, (2.8)

where R,: X— X, and ﬁ,,:Y—» Y, are restrictions (linear surjections) and 7(q) is
independent of h. The latter requirement with p>p means that 7,(q), the
local truncation error for the solution g, satisfies an asymptotic expansion.
Further, assume that we have a sequence of nested discretisations for
h=2%hy, k=12,..: this means that, for # and 2k from this sequence, res-
t_rictio_r}s th_,_h:Xh—-)th and Ry,y},IYh—)YZh exist such that Ry,J,Rh = Ry, and
Rz},‘th = th
Then for the relative truncation error

Tonn = Noy Rypp — Ezh.h Ny, 2.9

we easily derive

Tan Ri = T — Ropp 7 - (2.10)

With the procedure as described in section 1 we construci a sequence of nested
discretisations for the Euler equations. Under the assumption (2.8), with p >p,

we can compute Ty 4(qs) and apply T-extrapolation [19,14] to improve the
accuracy of our solution.

Combining (2.8) and (2.10) we see

W R = e R+ 64P) @11)

= Ropp 7y + O(h?)



=27 1, + OhP).

Ny(Rwq) = ry + h? Ry 7(q) + O(KF) (2.12)
= Iy + hP ;h,ZhKZh T(q)
+ P (I, — Py Ry p) Ry 7(q) + C(HP)

l —
=r + > 1 Py on Ton n(Riq)

+ (Ih_ih.?JnEZh.h) T(q) + o(h?).

sonclude _  that for ﬁ;,' 2% and 7(q) such that
.2 Rapp) Ry(q) = W(hP7P) we obtain a discretisation scheme con-
" O(h?) if we solve for g}, the equation

Ni(gi) =y + Py o Tun(qh) - (2.13)

»-1
hat, with the accuracy restriction, we still have some freedom in the
 Powp-

‘or a given g, €X, the 1y ,(qx) is easily evaluated from (2.9), the solu-
2.13) is readily found by a defect correction iteration. For the accu-
-oximation of the Euler equations, we apply the r-extrapolation to the
r discretisation (superbox or starbox)

Ni(gs) = 0. (2.14)

. since the efficient solution procedure FMG is available only for the
T discrete system

Ni(gn) = 1,
in an iterative procedurte the cquations
, | =
Ni(gh ™ D) = NA(@™) — Ma@™) + 5 Pron Tuna(gh®). (2.15)

itial step the right-hand-side is taken equal to zero, so that approxi-
1€ first order accurate discrete system is solved. In the next few steps
erm in the right-hand-side of (2.15) is replaced by zero. At the end of
ion the formula (2.15) is applied in full.

15) converges, we find an approximate solution g, = R;q, that

N}(RwG) = Py o Ronma(@) + O(hP). (2.16)
thm with increasing accuracy

n at the approximate solution g, of the discrete Euler equations (2.16)
:n fine mesh and we assume that also L — 1 coarser meshes exist. We
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denote the level of refinement by m and the approximate solution at level m by
qlm] = gy¢-~,. The coarser grids, m <L, are not only used for the realisation
of FAS-iteration steps, but also for the construction of the initial estimate for
the iteration process. The algorithm used to obtain the initial estimate and
further iterands in the defect correction process reads as follows:
proc IDEC TAU = ( int L few,maxit, ref [] field q,r) void:
begin
initialise at zero (r);
initialise at zero (q);
initialise (q[1]);
FMG2 (2,L,q,r);
r{L]: = eulerl q[L] - euler2 q[L];
FMG2 (2,L,q,r);
for f to maxit
do
f{L): = eulerl g[L] - euler2 q[L];
if {>few then
field tau= euler2 restrict q[L] - restrict euler2 g[L];
r{L}:= r{L] + prolon tau / 3
fi;
FAS(L,q, 1)
od
end

Here, q and r have the same meaning as in the procedure FMG. The opera-
tors eulerl and euler2 are respectively the lst and the 2nd order accurate
discrete operators N,. The procedure FMG2 is a generalisation of FMG for
the case that non-trivial initial estimates for g, and r, are known on all levels
m=1,...L.

proc FMG2 = (int n,L, ref ] field q,r) void:
begin
for m from L-1 by -1 to 1
do rm)] : = restrict ffm+ 1] od;
formto L
do
to n do FAS (m,q,r) od;
if m<L
then
qim+1]:= qm+1] +
+ interpolation (q[m] - restriction q[m + 1})
fi
od
end;
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Figure 1. The computation of qf; from g;; for the different schemes.
® : g;; values,
*~— qé- values,
=== : lines of linear interpolation,

: lines of piecewise constant interpolation.
fig. la: the basic Ist order scheme,
fig. 1b: the superbox scheme,
fig. Ic: the 1st order starbox scheme,
fig. 1d: the 2st order starbox scheme.
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